On the Sup-norm Condition Number of the Multivariate Triangular Bernstein Basis
نویسندگان
چکیده
We give an upper bound for the L condition number of the triangular Bernstein basis for polynomials of total degree at most n in s variables. The upper bound grows like (s + 1) when n tends to infinity. Moreover the upper bound is independent of s for s ≥ n− 1.
منابع مشابه
On the L1-Condition Number of the Univariate Bernstein Basis
We show that the size of the 1-norm condition number of the univariate Bernstein basis for polynomials of degree n is O(2n/ √ n). This is consistent with known estimates [3], [5] for p = 2 and p = ∞ and leads to asymptotically correct results for the p-norm condition number of the Bernstein basis for any p with 1 ≤ p ≤ ∞.
متن کاملOptimally Stable Multivariate Bases
We show that the tensor product B-spline basis and the triangular Bernstein basis are in some sense best conditioned among all nonnegative bases for the spaces of tensor product splines and multivariate polynomials, respectively. We also introduce some new condition numbers which are analogies of component-wise condition numbers for linear systems introduced by Skeel. x
متن کاملDerived fuzzy importance of attributes based on the weakest triangular norm-based fuzzy arithmetic and applications to the hotel services
The correlation between the performance of attributes and the overallsatisfaction such as they are perceived by the customers is often used tocalculate the importance of attributes in the crisp case. Recently, the methodwas extended, based on the standard Zadeh extension principle, to the fuzzycase, taking into account the specificity of the human thinking. Thedifficulties of calculation are im...
متن کاملNumerical resolution of large deflections in cantilever beams by Bernstein spectral method and a convolution quadrature.
The mathematical modeling of the large deflections for the cantilever beams leads to a nonlinear differential equation with the mixed boundary conditions. Different numerical methods have been implemented by various authors for such problems. In this paper, two novel numerical techniques are investigated for the numerical simulation of the problem. The first is based on a spectral method utiliz...
متن کاملVibration Analysis of Orthotropic Triangular Nanoplates Using Nonlocal Elasticity Theory and Galerkin Method
In this article, classical plate theory (CPT) is reformulated using the nonlocal differential constitutive relations of Eringen to develop an equivalent continuum model for orthotropic triangular nanoplates. The equations of motion are derived and the Galerkin’s approach in conjunction with the area coordinates is used as a basis for the solution. Nonlocal theories are employed to bring out the...
متن کامل